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Application of Symbolic Manipulation 
to Hecke Transformations of Modular Forms 

in Two Variables 

By Harvey Cohn and Jesse Deutsch* 

Dedicated to Daniel Shanks on the occasion of his 70th birthday 

Abstract. The Hecke transformation of modular forms in several variables generates nonsym- 
metric modular forms out of symmetric forms. This is useful since symmetric forms arise out 
of Eisenstein series and are easy to construct, while nonsymmetric forms are much harder to 
construct. A symbolic manipulation system is required because of the magnitude of the 
Fourier expansions. This process is carried out for Hilbert modular functions over Q(2). 

1. The Rational Case. An important application of modular functions to number 
theory depends on the argument multiplication in modular forms. Specifically, in the 
classical case, z is in the upper half-plane 

(1.1) H = {Imz > 0) 

and modular forms are defined. These are functions f(z) holomorphic in H which 
are covariant under the modular group, i.e., 

(1.2) f. az + by f(z)(cz + d)2k, k E Z+, ab,c,d E Z, ad-bc= 1. 

Here 2k is called the degree of the form. Note, because of the even exponent 2k, we 
need not worry about the identification of 

(az + b)/(cz + d) and (-az - b)/(-cz - d). 

Also, f (z) must approach a limit as z -- ioo, and, if the limit is zero, f(z) is called a 
cusp form. The modular (or cusp) forms of a given degree form a vector space M2k 

(or C2k) of finite dimension over C. The crux of the application is that the modular 
forms form a finitely generated graded ring R. If we consider f(nz) for some values 
of n E Z +, then there are a set of conjugates whose symmetric functions are 
modular forms. We list them (for p prime only): 

(1.3a) f.(z) = P2kf (pz), fr(z) = f(zr) < r -1 
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In particular, the following function (the Hecke-transformation): 

I (1.3b) Tpf (Z) = , E f(Z) 
J =O 

is a modular form of degree 2k again (Oust like f ). Actually, if f(z) has the Fourier 
expansion 

(1.4a) f(z) = ao + anqn q = e27Tz 

= 1 

then a standard calculation with roots of unity yields 

T~~~~~ (1.4b) f (Z) = (p2k + p)ao + Z ( P2kan p+ panp/) 
= 1 

where the symbol "a has the value 0 when p does not divide n. 
In particular, when f(z) is a cusp form, so is TPf7(z), and if there is only one cusp 

form in the space C2k, 

(1.5) Tpf1(z) = cpf(z), cP constant. 

This is indeed true for a famous case where 2k = 12, 

(1.6a) f (z) = qH (1 _ n )24 q = e 271z 

n=1 

and Mordell used this analysis to prove the multiplicative property of the coeffi- 
cients T(n) (Ramanujan's tau function) as defined by 

n 

(1.6b) f(z) = T (n)qn. 
n=1 

(This is the landmark achievement of Mordell [6].) 

2. Modular Forms in Z[F/I]. Hecke provided a generalization of this procedure [5] 
to modular forms including those over integer rings; we take only the specific case 

(2.1) Z[V ] = {a + b2i; a,b EZ }. 

Here the modular forms are functions of two variables, z, z' and 

(2.2) H= {Im(z) > 0,Im(z') > O 

and the modular group is [4] 

(2.3a) F: (Z' Z')( az + a'z'+ f3 
kYZ + 8 'z' +8' 

where 

(2.3b) a,3,y,8 e i[], a8 - y= 1. 

Here a' = a - bVI is the conjugate over c of a = a + bx/. We shall define a 
modular form f (z, z') of degree 2k which is holomorphic and satisfies on H 

(2.4) f ( + ' ) = f (z)((YZ + 8)(QYZ' + 8,))2k 

We denote f (z, z') by f(z) for brevity. Again f (z) approaches a constant as z (and 
z') approaches ioo, and if the constant is zero, f(z) is called a cusp form. As before, 
the definitions of the space M2k (or C20) of modular forms (or cusp forms) over C 
are introduced. 
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For modular forms over quadratic fields (in this case Q( 2)) the more important 
number-theoretic applications require separate consideration of the symmetric mod- 
ular group defined as 

(2.5a) J* =(,z z- z'). 

For this augmented group a symmetric subspace of the forms M2*k (or C*k) is 
defined. In brief, it is characterized by the further property 

(2.5b) f(z Z') = f(z' Z) 

For M 'k and C k the symmetric modular forms and the cusp forms are generated 
by Eisenstein series which are intrinsically symmetric. Their expansions are of the 
form 

(2.6a) G2k = A2k + B2kEqbraS2k _(a + b2), k > 1, 

with 

(2.6b) q = evi(Z+Z') r - el(z-z')/V 

summed over some algebraic integers of Z[2], 

(2.6c) a = a + by , IaI< bv. 

Then, the coefficients are given by 

(2.6d) 5a,(a) = EY, u (y (a), 

with f summed over all ideals (It) dividing (a). The condition for symmetry is 
r *-* 1/r, or equivalently that su(a) = s(-a'). We need only k = 1, 2, 3 to generate 
the ring of symmetric modular forms of even degree. Here we use the additional 
constants 

(2.7) ( A2, B2) = (1, 48), (A4, B4) = (11, 480), (A6, B6) = (361,1008). 

Actually, the more convenient generators are H2, H4, H6, given by 

(2.8a) H2= G2= 

(2.8b) H4= (IG 2- G4)/576, 

361G - G6- 50976G2H4 
(2.8c) H6= 224640 

(see Cohn [1] and Table I for the Fourier expansions). For these forms 

(2.9) Hm(zZ') = Hm(Z',Z), m = 2,4,6. 

If we are interested in nonsymmetric positive forms of even degree, we must start 
with the one of lowest possible degree, 14, satisfying 

(2.10) H14(z, Z') = _H14(z' z)- 

It is arrived at (only through a very difficult analysis) by 

(2.11) H12 = H4H6(H2H4 + 4H6) 

X(H2H6 - 1728H62- 288H6H4H2 + 4H22H42 1024H4) 

(see Table I for the coefficients). The background material can be found in 
Gundlach [3] and the special form of H14 is essentially due to Miller [7]. 
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TABLE I 

Expansions of some modular forms 

H2 = 1 + q{48,(144)} + q2{336,384,(720)} 
+ q3{144,480,1152,864, (1440)} 
+ q4{384, 1488,1152,2688, 1536, (3024)} 
+ q5{48, 1152,1248,2592,2016, 3456,2736, (3744)} 
+ q6{720,1152, 3360,2304,5760,3840,6048, 3456, (7200)) 
+ q7{864,2592,3072,4608,3552,6048,4320,6912,4704, (9216)} + 

H4= q{,(-2)} - q2{4,8, (-24)) 
-q3(2, -26, -16,14, (52)) 
-q4{8,16,152, -32, -224, (160)) 
+ q5{1, 16,138,28, -70,304, -279, (-276)} 
+ q6{24, -152, -104,336, -192, -208,56, -72, (624)) 
-q7{14, -28, -64,448,294. -140, -266,672, -994, (128)) + ... 

H6 = q - q2{2,16,(-12)} + q3{1,32,40,-32,(170)} 
-q4{16, 104, -208,720, -192, (592)) 
+ q5{40, -320, 82,1088,376, -768, (3834)} 
+ q6{12, 208,940, -864,2784, -2464, -1444, -912, (-2568)) 
-q7{32, -82,768,3424,4832,2230, -10016,12816,4384, (-20032)) + 

H14 = q2{1, [0]) - q3{80, 392, [0]) 
-q4{1,j0, -63,1792, -12040, [0]) 
+ q5{80,0,31360, -49840, -5040,149680, [0]) 
-q6{63,0,158326, -798720,2233494, -702464,1975715, [0]) 
+q7{392, -31360,0, -963200,574000,3987200,9514960,12666080,1186248, [0]) + 

Here {a,,a, .. , a, (ao)) q means Et tar'q" with a, = a.t (symmetric case) and 
tat, at-,, .. .a, a [0]) q" means the same but with a, - -at (antisymmetric case). 

3. The Hecke Transform in Z[F2 1. To construct an operator analogous to Tp 
above, we take the primes in Z[V21 of degree 1. They are given for p = 2 by the 
special factorization 

(3.1) 2=v ', =2?+ /, 2'=2-', 

andwhenp- ?1(mod8)(p=A2-2B2) 

(3.2) p= rq', v =A+BV/i>O, 'Tr'=A-B127>O. 

Again, we analogously define for f(z, z') in M 2k, 

(3.3a) f0(z; z') = f ( rz, z) p2k, 

(3.3b) fr(Z') =(z + r z' + r) 0 < r p -1 

and the Hecke operator is again seen to produce a modular form of degree 2k, 

00 

(3.3c) g(z, z') = Tf (z,z') = Efj(z, z'). 
0 
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It can be shown analogously with (1.4a, b) (see [la]) that if 

(3.4a) f(Z' Z') = s(O) + s(a)qbra, a = a + by2, Ja| < bF, 
a 

then with s(/3) = 0 for ,B 7X[VY], 

(3.4b) T,,J(Zz) = (p2k + p)S(0) + ? (p2kS(a/7) + ps(7a))qbra. 
a 

Now, as even Hecke recognized, T, would destroy symmetry in general. Indeed, 
by the symmetry of f(z, z'), 

(3.5a) g(z, z') = Tf(z', Z ) = T7f (Z. Z'), 

so g(z, z') + g(z', z), in general. Otherwise expressed, if 

(3.5b) Drf(z, Z') = g(Z, Z') - g(Z', Z), 

then for the difference operator 

(3.5c) DJf(z, Z') = -Dj (z', z) = -Drof(z, ) 

in general, Dj(z, z') + 0. 
An exceptional case is for p = 2, 7 = 2 + /2. Since (2 + VI)/(2 - r= 

(1 + r2 )2 and the operation 

(3.6a) (z, z ) (z(1 - F2)2 Z'(1 + 2)2) 

lies in F, then so does 

(3.6b) (z(2 + v' ), z'(2 - Vi)) (z(2 - r/I), z'(2 + 11)). 

For r I p (=+ 2) however, s/q' is not a unit and this operation does not have an 
analogue. 

4. The Computation. Specifically, we shall display the transformation T, on C2k 

for k = 1,2,3,4,5,6,7, and 

(4.1a) 7r = 2 + V , p = 2, 

(4.1b) 7T = 3 + , p =7, 

the two smallest primes of first order. It is unnecessary to consider M2k since the 
noncusp form G2k is known to split off diagonally by 

(4.2) TG2k = G2k(P 2k+ P) 

by the multiplicative nature of sj(a). We find (see Table III) that for Sr = 2 + 12, 
C*k is transformed into itself, or, equivalently, is annihilated by Dq. On the other 
hand, for 7r = 3 + v2, C* is not preserved but seems mapped surjectively onto 
C2k. Specifically, we must go as far as k = 7 to see this. In fact we construct H14 
from C*k, the symmetric subspace, by means of 

(4.3) DT(H2H2) = 2 46080H14 

(see matrix entry in Table IV for ST = 3 + x and 2k = 14). 
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TABLE II 
Basis of C2k, the cusp forms of degree 2k 

2 k d 2B A) 2 A ,B I) 

4 1 [H4] 
6 2 [H6,H4H2] 
8 3 [H6H2, H2, H4H4] 

10 4 [H6H4, H6H2, H4H2, l4H2] 
12 6 [HH6H4H2, H6H,4H3, H HH H2] 

14 8 ~~ H4H2, H4H ,H] 14 8 [ H6f2 H H6 H42, H6 H4H22z H6 H24 H43H2 I H23H2, H4 H2, HI 4] 

TABLE III 

Transformation matrix for T, on bases in Table II together with 

eigenvalue polynomials for 77 = 2 + r 

2k =4: (-2) 2k = 6: (72 -) 

x + 2 X2+ 2x - 72 

-24 0 -2 0 
0 192 1 3~~~~~456 0 672 1 2k= 8: (21 8 02) 2k= 10: (-2486 648 06 2) 

216 0 -2 -27648 648 0 -20 

x - 6x2 - 424x + 1344 x4 + 18x3 - 1672X2 - 2169x + 175104 

0 0 0 -64 1 0 
0 24 0 0 -2 0 

2k= 12: 0 13824 0 -110592 2304 1 
2k=12: ~~~~ ~~~~-24 -6 0 -32 0 Of 

3456 -192 1 0 8 0 
-497664 -235008 2232 0 0 -2 

(x + 24)(x5 - 22x4 - 10216x3 + 252736X2 + 18336768x - 528187392) 

0 -1152 0 0 32 1 0 0 
0 32 1 0 8 0 0 0 
0 9216 72 0 0 -2 0 0 
0 -3317760 44928 0 -940032 8544 1 0 

2.=14: 24 384 -6 0 -32 0 0 0 
13824 0 -288 1 0 8 0 0 

-4478976 15925248 -1396224 8424 0 0 -2 0 
0 0 0 0 0 0 0 80 

(x - 80)2(x + 112)(x5 -- 11Ox4 - 32552x3 + 3213504X2 + 127973376x - 4745723904) 

The method of construction is of some interest because nonsymmetric modular 
forms are hard to generate directly. They require a combination of such arcane 
devices as Poincare series, theta series, and modular forms of half weight, while 
many symmetric functions are deduced effortlessly from Eisenstein series. It is 
necessary to have a symbolic manipulation program because the modular forms 
must be manipulated as Fourier series (compare Nagaoka [8]). Series with 80 terms 
were used routinely with some auxiliary series having 128 terms and coefficients of 
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TABLE IV 

Transformation matrix for T, on bases in Table II together with 

eigenvalue polynomials for 7r = 3 + 11 

2k = 4: (-8) 2k = 6: 1152 40) 

x + 8 x2 - 48x - 18112 

-3352 -14 -200 
-616 -1536 32 -1751040 1064 -113664 80 2k = 8: -8 184 -4) 2k = 10: 28416 -56 4552 -4 
6912 -165888 88/ 46891008 24192 940032 1361 

x3 + 344x2 - 104838x - 441929216 x4 - 2400x3 - 83936384X2 + 378295830528x - 105959154151424 

-16552 -5472 -4 4480 280 0 
-107136 -11944 34 96768 -1208 1 

2k= 12 -31850496 11446272 5048 -173408256 658944 128 
21120 5064 -6 -3080 84 0 

2211840 56832 -104 1161216 -7208 -4 
5096079360 1822556160 50688 2675441664 4755456 184 

(x + 16744)(x5 + 16808x4 - 508797785x3 + 342941398016X2 
+5740462575196131328x - 53374179670054702907392) 

2k = 14: 

-35032 863232 15168 -4 195712 -1496 0 46080 
4488 92488 2272 1 1920 66 0 768 

753408 19998720 163784 82 1059840 7000 1 -110592 
573308928 53721169920 438497280 11336 410517504 3311616 176 -382205952 

7680 -851328 4248 -6 -154904 -12 0 18432 
-11059200 429981696 3513600 -152 104865092 1 8096 -4 3981312 

137594142720 156959244288 56292212736 86400 148168507392 12718080 232 -39749419008 
1028736 16613376 96960 -82 2168832 1864 -1 -74840 

(x + 175832)(x2 + 149680x - 162326585792) 
(x_ - 293480x4 - 244834408832x3 + 18322890100510504X2 

+ 9406805895241425965056x - 488479049738663380060504064) 

magnitude 1010. We found MACSYMA (VAX version) barely sufficient in the 
capacity required. 

We constructed the matrix of the Hecke transformations of the basis of cusp 
forms of even degrees 2 to 14 and for ST = 2 + 11 (which possesses symmetry) and 

T= 3 + v'- (which does not). The results are shown in Tables III and IV, respec- 
tively. In each case the matrices are given with respect to the bases of C2k, namely 

(4.4) C2k = [B(1) , (d) I 

as shown in Table II. 
The eigenvalue equations are of some theoretical interest because of their invari- 

rnce under change of basis. They are of even more compelling numerical interest 
because the instances of rational and quadratic factors seems very difficult to 
Fathom. (See Tables III and IV for further details.) A further study is underway by 
mne of the authors [2]. 
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